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Q-state Potts models in Hamiltonian field theory for Q a 4  
in (1 + 1) dimensions 

C J Hamer 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT 2600, Australia 

Received 4 February 1981 in final form 27 April 1981 

Abstract. Finite-lattice sequence extrapolation methods are applied to the Q-state Potts 
models in (1 + 1)-D Hamiltonian field theory. Thermal exponents U = 0.71 k0.02, a = 
0.53*0.02 are obtained for the four-state model. Methods are discussed for treating the 
first-order transitions for Q > 4, and a sequence extrapolation is used to estimate the latent 
heat. Exact analytic formulae are derived for the ground-state energy, the mass gap, and the 
latent heat at the transition point; these are compared with the numerical results. 

1. Introduction 

In a recent paper (Hamer and Barber (1980), hereafter referred to as HB), a method was 
presented for accelerating the convergence of finite-lattice sequences to their bulk limit. 
The method employed a modification (Barber and Hamer 1980) of a sequence 
transformation due to Vanden Broeck and Schwartz (1979, hereafter VBS). Applied to 
the (1 + 1)-dimensional? 2, or three-state Potts model in a Hamiltonian field theory 
formulation, these techniques yielded estimates for the critical exponents of exkllent 
accuracy. 

4, in (1 + 1) 
dimensions. This is a natural extension of the earlier work, and also allows us to explore 
the application of finite-size scaling methods to systems with a first-order phase 
transition. 

Some properties of the Potts model have been derived analytically by Baxter 
(1973b). He has obtained expressions for the free energy at the critical point (where the 
model is self-dual), and shown that for Q s 4 the Q-state model undergoes a second- 
order transition, while for Q > 4 the transition becomes first-order, i.e. there is a finite 
latent heat. For Q = 4 the model is conjectured to have thermal exponents CY = U = 5, 
C Y / Y  = 1, on the basis of universality arguments (Enting 1975, Kadanoff 1977, Domany 
and Riedel 1978, den Nijs 1979). 

Several numerical studies have ‘been performed on these models. Restricting 
ourselves to the thermal exponents only, series analyses for Q = 4 have been made by 
Enting (1975) and Ditzian and Kadanoff (1979). A large number of renormalisation 
group analyses have been made, as listed by Hu (1980) and Black and Emery (1981). 
Recently, finite-size scaling treatments akin to the present one have been presented by 
Roomany and Wyld (1980b), Nightingale and Blote (1980) and Blote eta1 (1980). The 

t That is, one space and one time dimension. 

Here we apply the same techniques to Q-state Potts models with Q 
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last-named reference uses methods almost identical to ours, in a statistical mechanics 
(Euclidean space) framework. 

The first objective addressed in this paper is to translate the known exact results of 
Baxter (1973b) and others into the Hamiltonian field theory framework. First, an 
equivalence is shown between the Potts model and a staggered eight-vertex model 
(Temperley and Lieb 1971, Baxter 1973b). The eight-vertex Hamiltonian is found by 
the transfer matrix procedure of Fradkin and Susskind (1978): at the self-dual point, it 
reduces to a Heisenberg-Ising Hamiltonian. Hence one may deduces the ground-state 
energy, the mass gap, and the latent heat at the transition point, using the work of Yang 
and Yang (1966), Johnson et a1 (1973) and Baxter (1973a, b). The conjecture of 
universality between the statistical mechanics and Hamiltonian field theory formula- 
tions is confirmed for this model. 

Next, numerical finite-size scaling analyses were performed, both on the original 
Potts model Hamiltonian and on the equivalent eight-vertex Hamiltonian. Results were 
obtained for Q = 4, 5 ,  6, 8 and 12. Our conclusions are as Eollows. 

For Q = 4, a second-order transition is found at the self-dual point, and the critical 
exponents are estimated to be v = 0.71 * 0.02, cy/v = 0.75 f 0.01 and cy = 0.53 f 0.02. 
These results are in reasonable agreement with other recent estimates (Ditzian and 
Kadanoff 1979, Mu 1980, Blote et a1 1980), and they satisfy hyperscaling. 
Unfortunately, they appear incompatible with the universality conjecture above. The 
most likely explanation of this discrepancy is the presence of logarithmic correction 
terms of the sort proposed by Nauenberg and Scalapino (1980), and Black and Emery 
(198 1). 

For Q = 5 and 6, the transition at the self-dual point is impossible to distinguish from 
a second-order one by our present numerical methods: both the mass gap and the p 
function appear to vanish there. The reason for this may be seen in the exact solution 
for the mass gap: it decreases exponentially as Q + 4 from above, and is quite minute for 
Q = 5 and 6. For Q = 8 and 12, however, the numerical estimates of the mass gap are 
definitely greater than zero at the transition point, and in reasonable agreement with the 
exact solution. 

Several methods were tried for estimating the latent heat (i.e. the discontinuity at 
the transition point in the first derivative of the ground-state energy per site). This 
proved to be a difficult task to perform with any accuracy, because it is hard to separate 
the effects of strong curvature near the transition point from a discontinuity at the 
transition point. But in the end a particular finite-lattice sequence extrapolation 
method was tried which had some success. The estimates of the latent heat for Q = 5 
and 6 were still too high (in these cases the exact solutions are again small), but for Q = 8 
and 12 they were surprisingly accurate. A similar method could be used to estimate 
spontaneous magnetisations in finite-lattice analyses. 

The finite-size scaling behaviour characteristic of a first-order transition was pro- 
posed on physical grounds by Imry (1980). Our results agree with his hypothesis. The 
finite-lattice specific heats exhibit peaks whose heights increase linearly with lattice size, 
and whose widths decrease linearly, building up a delta function singularity in the bulk 
limit. 

The layout of the paper is as follows. The Hamiltonian field theory formulation of 
the Q-state Potts model is reviewed in 8 2 .  The equivalence with an eight-vertex model, 

i While revising this paper, we learnt that the ground-state energy and latent heat have also been derived by 
Kogut, Pearson and Shigemitsu (unpublished). 
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and exact results at the self-dual point, are derived in 8 3 .  Finite-lattice calculations for 
the four- and five-state Potts models are presented in 8 4, and for the equivalent 
eight-vertex models in 8 5 .  A summary and conclusions are given in 8 6. 

2. Formulation 

The Hamiltonian field theory version of the Q-state Potts model has been discussed by 
S6lyom (1980), using the transfer matrix derived by Mittag and Stephen (1971). On a 
one-dimensional spatial lattice of M sites with a continuous time variable, the lattice 
Hamiltonian may be written 

M Q-1 

H ( h ) = -  1 1 (Rf+AMfMP;k), (2.1) 

nlMi = u- lM1ol ,  RIM: = uM: Cl,, n? = M? = 1, (2.2) 

(2.3) 

i=1  k = l  

where the operators Cl, and MI at site i obey the Z(Q) algebra: 

with 
2 d Q  w = e  . 

We do not consider any interaction with an external magnetic field. Periodic boundary 
conditions are applied. 

In the strong coupling (high-temperature) region, the operators may be represented 
on a basis of eigenstates of RI : 

R i l W J  = OJ w h ) ,  w 1 = 0 , 1 , .  . . ,  Q-1, (2.4) 

with M t  as ladder operator: 

M t  Iwi) = / (w i  + 1) mod Q). 

Then H ( h )  may be reduced to 

(2.5) 

In the weak coupling (low-temperature) region, on the other hand, eigenstates of Mi 

Milmi) = wmilmi) (2.7) 

ni lmi )  = I(mi + 1) mod Q). (2.8) 

are employed: 

and 

Then H ( A )  reduces to 

The duality relation for these models is identical to that for the ZN models (S6lyom 
1980, Mittag and Stephen 1971, cf Elitzur et a1 1979), namely 

H ( A )  = h H ( l / A ) .  (2.10) 

It follows that the mass gap F(A)  between the ground state and first excited state obeys a 
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similar relation; so that if the model possesses a single second-order phase transition 
(i.e. a unique point at which the mass gap vanishes), then it must occur at the self-dual 
point A = 1. 

The quantities which will be of interest to us can all be deduced from the lowest two 
eigenvalues of the Hamiltonian (2.1), Eo and El .  They include the mass gap 

the Callan-Symanzik 6 function (Hamer et al 1979) 

and the specific heat per site (HB) 

The finite-size scaling and sequence extrapolation techniques which we use to treat 
these models were summarised in HB. We refer to this paper for details and earlier 
references. 

3. Analytic results 

Some exact results are kncjwn for the critical behaviour of the two-dimensional Potts 
model in statistical mechanics (Baxter 1973b, Johnson et a1 1973). One may derive 
equivalent results for the corresponding Hamiltonian field theory, as follows. 

3.1. Potts model field theory Hamiltonian 

For future reference, we first re-derive the field theory Hamiltonian of the Potts model 
(S6lyom 1980). This may be done by the transfer matrix procedure of Fradkin and 
Susskind (1978). 

The 2D anisotropic Potts model in statistical mechanics has a partition function 

where i, j label rows and columns of the M x M lattice, KH and Kv are the horizontal 
and vertical coupling constants, and m(i , j )  is the spin on site ( i , j ) ,  which may take 
values 0, 1, . . . , Q - 1. The overall sum runs through all possible spin configurations. 

This partition function can be written as the trace of the Mth power of a row-to-row 
transfer matrix T (Mittag and Stephen 1971), where the matrix T has an element for 
each possible configuration of spins on two neighbouring rows: 

where cj denotes the spin configuration on row i. 
Now consider the limit (cf Fradkin and Susskind 1978) 

7 = e-KV+ 0,  KH = QA e-KV. (3.3) 
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Then the dominant elements of T are the ‘diagonal’ ones, for which the spin configura- 
tions cq, ui+1 are identical: 

\ i = l  

M 

+ eMKv( 1 + QAT i = l  1 am(i , j ) ,m(i , j+l))  (3.4) 

The next most important elements are those for which only one spin is changed in going 
from row i to row (i + i ) :  

1, (3.5) r, flip +, e(M-l)K”+ O(e‘M-2’Kv 

and all other elements are of higher order in T. Thus in the limit (3.3) the transfer matrix 

T+eMKv(l- .rH) (3.6) 
where the operator H acting between two rows is 

Here we have dropped the row index i, and introduced our ladder operator nj of the 
previous section, which causes a spin flip at column j .  

In the above treatment, 7 is to be interpreted as a spacing in ‘imaginary time’ 
(Fradkin and Susskind 1978), and the limit (3.3) is that in which the time variable 
becomes continuous. The operator H is then just the equivalent field theory Hamil- 
tonian, up to a constant term-cf the low-temperature representation, equation (2.9). 

3.2. A n  equivalent eight-vertex Hamiltonian 

Baxter (1973b) has shown that the two-dimensional Potts model is equivalent to a 
staggered eight-vertex model, as follows. 

The partition function (3.1) can be rewritten 

(3.8) 

(3.9) 

This expression can be related to a problem in graph theory (Kasteleyn and Fortuin 
1969). Expand the product in (3.8), and for each link on the lattice draw a line if one 
takes the vSm,mf term, no line if one takes unity. The summation over spins can then be 
performed for each term in the expansion, giving 

(3.10) 

where the summation is over all graphs G (i.e. all ways of drawing lines on the links of 
the lattice), C is the number of connected pieces in G (including isolated sites), and l H ,  
lv are the numbers of horizontal and vertical lines in the graph G, respectively. 

Temperley and Lieb (1971) have shown that the expression (3.10) is equivalent to 

(3.11) Z = QL”W(XH,Xv, Q112, Q1”) 
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where W is a 'generalised Whitney polynomial', L = kf2 is the number of sites on the 
lattice, and 

X , =  U , / Q ' / ~ .  (3.12) 

They then show that this Whitney polynomial can be related to a staggered eight-vertex 
model on an auxiliary lattice of 2L sites. This model has A and B sublattices alternating 
as in figure l(a)) .  The eight possible vertex types are represented in terms of arrow 
configurations in figure l(b)),  and in terms of + or - spin variables in figure l (c))  (the 
two representations are related by the convention that a positive spin corresponds to a 
rightgoing arrow, and a negative one to a leftgoing arrow). Our vertices are rotated by 
45" relative to the usual convention: this corresponds to the diagonal transfer matrix 
treatment of Temperley and Lieb. 

Using Temperley and Lieb's results, we find that the Potts partition function (3.1 1) 
is given by 

z = vhz* 13.13) 

where Z* is the partition function of a staggered eight-vertex model as described above, 
with vertex weights 

(A) w l , ,  . . , w 8 = X , X ,  1, 1 ,0 ,0 ,  (X-te-"), (Xi-e"),  

x x  
A A  w ; ,  . . . , U ;  =-,-, 1,1 ,0 ,0 ,  (B) 

(3.14) 

on the A and B sublattices respectively. where we have introduced new variables 

X =Xv, A = XHXV,  2 cosh v = Q1l2. (3.15) 

t t  - -  t -  - t  t 4  - -  - +  t -  
+ t  - -  - f  f -  - -  + t  - +  + -  

1 2 3 4 5 6 7 8 
i C 1  

Figure 1. (a) Pattern of A and B vertices on the auxiliary lattice. ( h )  Arrow representation 
of the eight possible vertices. (c) Spin representation of the eight possible vertices. 
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Note that the set of weights (3.14) is only one of several alternative sets, which may be 
transformed into each other by simultaneously rotating all the vertices in figure 1 by 90", 
reversing all arrows on one or other diagonal, etc (see Temperley and Lieb 1971, Baxter 
1973b, Fan and Wu 1970). 

Now Temperley and Lieb have also shown that the vertices of figure 1 can be 
expressed in operator form, in terms of Pauli-type operators 

(3.16) 

which act between the upper and lower members of a pair of spins in the vertices of 
figure l (c) .  Thus we find the operator correspondences 

I = J1+ J2 + J7 +J8,  

Si = J1-  J2 - J7 + J8, 

C1C2 = J3+ J4+ Js + J6, 

C1C;?S1= -J3 + J4- Js + J6, 

S1S2 = J1+ J2- J7-J8, 

S Z = J ~ - J ~ + J ~ - J ~ ,  
(3.17) 

C1 CzSlS2 = -J3 - J4 + Js + J6, 

C1 C2S2 = J3 - J4 - Js + 5 6 ,  

where J 1 ,  , . . , J8 are the vertex operators of figure l (c) ,  S,  and C, are the Pauli-type 
operators (3.16), with suffix denoting whether they act on the first or second spin pair, 
and I is the identity operator. 

Then the transfer matrix corresponding to the eight-vertex partition function 2" 
can be represented in operator form: 

X 2 M  1 1 -  
T* = -p- ( (J1 + J2 + J7 + J 8 )  + -(J3 + J4) +-(e yJ7 + e"J8) 

X X 

A A -  
X X ( J 1  + J 2 +  J 7 +  J8) + - ( J 3  + J4)+-(e 'J7+eyJ8)  (3.18) 

where the products run over a row of A vertices and a neighbouring row of I3 vertices, 
and at each vertex the operators J 1 ,  . . . , J8 have been introduced with the weights given 
in (3.14). Noting that ( J 1  + J2 + J7 + J 8 )  is just the identity operator, and taking the 
Fradkin-Susskind limit X + 00, one obtains 

x2 1 T* + ( T) ( I  +X [J3  + J4 + cosh v(J7 + J 8 )  +sinh v ( J 8  -J7)1 

A + - [J3 + J4 + cosh(J7 + J8)  + sinh(J8 - J7)l x B, (3.19) 

E ( X 2 / A ) M ( I  - TH"),  (3.20) 

where H *  is the field theory Hamiltonian operator for the eight-vertex model. Using 
the operator correspondences (3.16) and (3.17), this operator can then be rewritten in 
terms of Pauli matrices: 

+2t(-1)" sinh (3.21) 
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where t = [(l - A ) / ( l  +A)], and each site n corresponds to a link along a row of the 
auxiliary lattice in figure l (a ) .  

Collecting together multiplicative factors in (3.13) and (3.20), one finds 

Z = Tr( T') (3.22) 

where 

T = v$T* + e"""[ 1 - T ( M  + H")] (3.23) 

in the Fradkin-Susskind limit (3.3). From (3.6), (3.7), (3.21) and (3.23), one obtains our 
final result: an eight-vertex model operator equivalent to the Potts model field theory 
Hamiltonian (2.9) is 

2M 

n = l  

H'=(T) 1 (1-cosh v [ l + ( - l ) " t ] [ ( c + f ~ ~ ~ + ~  + c + n ~ , + ~ )  Y Y  

+cosh v(1  -a?c+?+l)]-(-l)"t(sinh 2v) (T?} (3.24) 

where 

t = [(I - A ) / ( 1  +A)], cosh w = Q1I2/2. (3.25) 

We have ignored boundary conditions in the foregoing discussion: these will not 
affect the thermodynamic limit. 

Note also that the equivalence between the Potts model and the staggered eight- 
vertex model is in fact an equivalence of operator algebras (Temperley and Lieb 1971, 
Baxter 1981). Hence one expects that not only the ground-state energy, but the whole 
set of allowed energy eigenvalues will be the same for both models; but the degeneracy 
pattern, or multiplicity of each eigenvalue, will in general be different?. 

3.3. Ground-state energy a t  the critical point 

Given the equivalence discussed in 8 3.2, it is easy to deduce the properties of the Potts 
model at the critical point from results in the literature. 

At the critical point A = 1, the eight-vertex Hamiltonian (3.24) reduces to 

(3.26) 

This is just the well known Heisenberg-Ising Hamiltonian. Its ground-state energy has 
been calculated by Yang and Yang (1966). The result may be expressed as 

lim (E& = l)/M) = 2 - Q -4Q1'2 I p(k)  cos k dR (3.27) 
M - m  

where for 0 s Q s 4, cos k = Q'I2/2, we may replace 

( 3 . 2 8 ~ )  
cosh a COS p - 1 d a  

4w 
cos k = p(k)dk=-sech 

COS p -cosh CY ' 

t I am indebted to Professor R J Baxter for this remark. 
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while for Q > 4, cosh v = Q1/’/2, we put 

COS CY cosh v - 1 d a  
cosh v -COS a ’ 4v 

COS k = p(k )  dk = - sech (3.28b) 

and the limits on the CY integration run from -CC to +CO. 

integrals for Q = 2, 3, 4. Thus at A = 1, 
Substituting (3.28a) into (3.27), the expression can be reduced to tabulated 

lim ( E o / M )  = - 4 / r  for Q = 2, 
A4+m 

= - ($+2J3( / r )  for Q = 3, 

=2-81n2  for Q = 4. (3.29) 

For Q >4,  using (3.28b), one obtains by contour integration 

(3.30) 
CO lim EO - =2-Q-Q1/’(Q-4) 

M + w ( M )  n = l  (cosh v -cosh(2n + 1 ) v )  

which must be evaluated numerically. Equivalent expressions for the free energy of the 
2D isotropic Potts model at the critical point were given by Baxter (1973b). 

3.4. Latent heat 

Baxter (1973b) has also evaluated the latent heat at the transition point for Q > 4, in the 
isotropic Potts model. This may be transcribed to the Hamiltonian field theory 
formulation, as follows. Transform the eight-vertex model with weights (3.14), thus: 

(i) Reverse all the arrows on the upper-left-to-lower-right diagonals in figure l (b) :  
this interchanges vertices J I  t* J4, J2t*J3,  Js t*J7, J6t*Js .  

(ii) Next, multiply the weights w s  by the quantity 

and the weights W 6  by its inverse (this operation leaves the partition function 
unchanged, since the numbers of type 5 and type 6 vertices are equal). 

Hence one obtains an equivalent ‘ice-type’ model, whose weights conform to the 
pattern of Baxter (1973a), with a ‘staggered electric field’ E given by 

(1 + X  e”) [ l+  ( X / A )  e-”] 
(1 +X e-”)[l+ (X/A) e’] 

eZE = 

Thus 

E-- (A - sinh v = $ T ( A  - 1) sinh 2v. 
x - * m  2 x  

(3.31) 

(3.32) 

Baxter (1973a) showed that the zero-field spontaneous staggered polarisation in his 
model is 

(3.33) 
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independent of X ,  or the lattice inhomogeneity. Hence the latent heat we are interested 
in is 

= 1 --&)--(A aE0 = I + & )  
ah 

33 

= 2 sinh 2u n tanh2 nv. 
n = l  

(3.34) 

(3.35) 

(The definition (3.34) follows from the equivalence between the free energy in 
statistical mechanics and the ground-state energy in field theory.) 

Note that the latent heat vanishes exponentially in the limit Q + 4: 
2 

- 5 7  * Q+4+ - 47TQ1/2 exp( 2(Q -4)1/2)* (3.36) 

3.5. Mass gap 

The mass gap for the Heisenberg-Ising Hamiltonian (3.26) has been evaluated by 
Johnson et a1 (1973). Transcribing their result, one finds that for Q > 4  there is a mass 
gap 

(3.37) 

where K is a complete elliptic integral of the first kind, whose nome is q = e-v, and 
whose modulus is k 2 .  Using standard relations for elliptic integrals, this may be 
rewritten 

F(A = 1) = (4/7r) sinh 2vK(1- k2)1/2 

2 sinh2v 
F(A = 1) = tanh4 nv 

(1 + 2  z:==1 qn2)2  n = l  
(3.38) 

which is easy to evaluate by numerical means. This quantity also has an essential 
singularity at Q = 4: 

2 
-7T 

F(A =1) - 8 7 ~ Q ” ~ e x p (  ) 
Q+4+ (Q -4)ll2 * 

(3.39) 

Related expressions for the correlation length in the statistical mechanics formulation 
were discussed by Black and Emery (1981). 

4. Finite-lattice results for the four- and five-state Potts model 

4.1. Four-state model 

The two lowest eigenvalues of the high-temperature Hamiltonian (2.6), together with 
their relevant derivatives, have been calculated numerically using the methods outlined 
in HB. At A = 0, the ground state has spin wi = 0 at all sites, while the first excited state 
has a single site with w i  # 0. The calculations were carried out for chains of up to eight 
sites, with periodic boundary conditions. The results at the expected critical point, 
A = 1, are listed in table 1. 
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Table 1. Finite-lattice results for the four-state Potts model as a function of lattice size M. 
Listed are the critical point estimates AM, and values at A = A, = 1 for: the ground-state 
energy per site E , / M ;  the specific heat C,; the mass gap F,w; the p function p M / g .  

1 6 
2 0.749 979 16 4 
3 0.953 624 66 3.737 0342 
4 0.982 518 60 3.651 0934 
5 0.991 081 85 3.612 3571 
6 0.994 622 98 3.591 5939 
7 0.996 400 62 3.579 1712 
8 0.997 413 77 3.571 1482 

0 
1.5 
2.386 7467 
3.130 9808 
3.801 5373 
4.424 2417 
5.012 3690 
5.573 8383 

4 1 
1.527 864 04 0.326 237 92 
0.965 107 15 0.184939 15 
0.707 687 34 0.124 829 92 
0.559 094 26 0.092 199 366 
0.462 143 42 0.072 003 040 
0.393 841 19 0.058 415 803 
0.343 106 44 0.048 728 042 

The location of the critical point was computed as the limit of the sequence of values 
{ A M }  defined by RM(AM) = 1, where RM(A) is the scaled mass gap ratio: 

RM (A ) = MEw (A ) /  ( M  - 1 )FM-I (A ). (4.1) 

Extrapolating this sequence by a modified VBS algorithm (see HB), an estimate for the 
critical point was obtained, 

A , =  0.9999*0.0001, (4.2) 

which agrees within errors with the expected value. Henceforth we assume A,  = 1. 

the p function (2.12). We form an ‘M-shifted’ sequence 
The critical exponent v was estimated from the finite-lattice sequence of values for 

~ M ( E )  = ( M + E ) [ ~ - - M M ( ~ ~ ) / P ~ ~ - - ~ ( A ~ ) I  (4.3) 

(where E is a free parameter), whose limit is 

lim p M ( & )  = l / v ,  all E ,  
M+CO 

(4.4) 

by finite-size scaling. Using modified VBS approximants to extrapolate this sequence to 
the limit, we find the result is stable for E 3 0.6, leading to an estimate 

1 / u  = 1.40*0.03, or v = 0.71 f 0.02. (4.5) 

The convergence of the sequence is not nearly as good as in the case of the Z3 or 
three-state Potts model (NB): this is due, perhaps, to a more complicated singularity 
structure. The approximants to the sequence p M ( & )  for E = 0.6 are displayed in table 2. 

Table 2. VBS approximants to l / v  for four-state Potts. The left-hand column lists 
successive values of the sequence P , ~ ( E )  for M = 2 , 3 , .  . . , 8  and E = 0.6. 

1.751 781 
1.559 217 1.463 094 
1.495 100 1.434 103 1.392 987 
1.463 841 1.420 807 1.395 537 1.398 928 
1.445 734 1.413 561 1.396 992 
1.434 148 1.409 203 
1.426 236 

~- 
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The bulk limit of the /3 function itself can be estimated by sequence extrapolation 
(HB) from the finite-lattice form of Romany and Wyld (1980a); the resulting curve is 
displayed in figure 2 .  The slope at the critical point should be -1/2A,v; thence we 
obtain v = 0.74 in agreement with the more accurate result (4.5). 

A 

Figure 2. The Callan-Symanzik function p(g ) /g  plotted against A for the four-state Potts 
model. Thk curve was obtained by sequence extrapolation from the Roomany-Wyld 
finite-lattice estimates. Expected errors are of order the width of the line. 

The ratio C Y / V  can be estimated from the finite-lattice specific heats. The ‘M-shifted’ 
sequence 

~4 ( E  ) = ( M  + E IC CM (A J / CM - I (A c )  - 1 I 

lim rM(&) = a /v ,  all E .  (4.7) 

(4.6) 

is expected by finite-size scaling to approach the limit 

M-+m 

Using modified VBS approximants to extrapolate this sequence, we find the result is 
stable for E 2 0, leading to an estimate 

(4.8) 

(4.9) 

C Y / Y  = 0.75 * 0.01 ,, 

or, using (4.5), 

CY = 0.53 * 0.02. 

A table of approximants for E = 0 is displayed in table 3. 

4.2. The five-state model 

High-temperature Hamiltonian eigenvalues of the five-state model were calculated for 
chains of up to seven sites. The results at the self-dual point A = 1 are displayed in table 
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Table 3. VBS approximants to a / v  for four-state Potts. The left-hand column lists 
successive values of the sequence ~ M ( E )  for M = 2 ,3 , .  . . , 8  and E = 0.0. 

~ 

ffi 

1.773 493 1.247 278 
1.247 278 0.981 8416 0.732 2102 
1.070 841 0.895 1915 0.753 3434 0.750 4996 
0.982 8198 0.854 0115 0.750 0574 
0.930 5305 0.830 0115 
0.896 1340 

Table 4. Finite-lattice results for the five-state Potts model as a function of lattice size M. 
Listed are the critical point estimates A M ,  and values at A = A , =  1 for: the ground-state 
energy per site E o / M ;  the specific heat CM; the mass gap FM; the function PM/g. 

M 

1 
2 
3 
4 
5 
6 
7 

__ 
AM -EoIM CM FM PM/ g 

8 0 5 1 
0.749 985 93 5.236 0680 2.236 0771 1.848 660 6 0.300 125 50 
0.952 784 00 4.879 8034 3.731 7375 1.153 350 9 0.162 045 76 
0.981 433 01 4.764 1094 5.096 8834 0.839 133 64 0.105 453 90 
0.990 080 47 4.712 1424 6.409 8409 0.659 090 99 0.075 602 337 
0.993 750 11 4.684 3514 7.697 3521 0.542 245 16 0.057 561 329 
0.995 645 58 4.667 7520 8.971 9066 0.460 271 04 0.045 671 350 

4. From the results of Baxter (1973b), a first-order phase transition is expected to occur 
at this point. 

Carrying through the standard procedure (HB) as for the four-state model, we first 
attempted to locate a second-order critical point by extrapolation of the sequence { A M } .  
The sequence was well converged, and the resulting estimate of the critical point is 

A c  = 0.9999 f 0.0005. (4.10) 

One is tempted to conclude that A = 1 is a second-order critical point, i.e. that the mass 
gap vanishes there. Estimating the critical exponent v as for the four-state model, one 
obtains v = 0.65 hO.02. 

But the exact result (3.38) shows that the mass gap is in fact finite at A = 1, with an 
expected value F = 0.002 05. This is so small that it is indistinguishable from zero by 
current finite-lattice techniques. Indeed, from (4.10) and the apparent index v = 0.65, 
one finds that the error estimate in (4.10) is equivalent to an error of f0.003 in the mass 
gap - 

The p function was also estimated, as for the four-state model, and the resulting 
curve is presented in figure 3. It also appears to vanish at a point indistinguishable from 
A = l .  

We next attempt to see whether the transition has a finite latent heat: that is, 
whether there is a finite discontinuity in the first derivative of the ground-state energy at 
the critical point. 

To start with, the bulk limit of the ground-state energy per site was estimated by 
sequence extrapolation from the finite-lattice results. The curve so obtained is shown in 
figure 4. Two points are worthy of note. First, the finite-lattice sequence is especially 
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Figure 3. The Callan-Symanzik function O ( g ) / g  plotted against A for the five-state Potts 
model. The curve was obtained by sequence extrapolation from the Roomany-Wyld 
finite-lattice estimates. Expected errors are of order the width of the line. 

2 
x 

Figure 4. The ground-state energy per site Eo/M plotted against A for the five-state Potts 
model. The broken lines are  finite-lattice results, labelled by lattice size M ;  the circled 
points are estimates of the bulk limit obtained by sequence extrapolation. Expected errors 
are of order the width of the line. 

well behaved at the critical point A = 1 (though not in the noman’s-land close by on 
either side), and allows an estimate 

lim [&(A = 1, M ) / M ]  = -4.622 5 5  * 0.000 05, (4.11) 
M-02 
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in excellent agreement with the exact result (8  5). Second, there does appear to be a 
discontinuity in the slope of Eo(A)/M at A = 1, which a rough fit by eye gives as 

A -  1, (4.12) 

where A was defined in (3.34). 
Next, the finite-lattice values for (l/M)aEo/aA are displayed in figure 5 .  The 

‘twisted fan’ pattern appears to indicate that a discontinuity is building up as the bulk 
limit is approached. The finite-lattice sequence again converges very well a tA  = 1, but 
not in the near vicinity on either side; nevertheless, a naive extrapolation (curve a in 
figure 5 )  gives 

lim lim 

. / , 1 

/ 
/ 

/ 
/ , 

I 
I 

1 I-_ 

0 2  0 4  0 6  0 8  10 1 2  
w- , 

(4.13) 

x 

Figure 5. The first derivative ( - E & / M )  plotted against A for the five-state Potts model. 
Description as for figure 3. Some rough error bars are shown for the estimates of the bulk 
limit. 

Using the equation 

lim [EL (1 + E )  + Eb (1 - E ) ]  = Eo(1) 
E + O  

which follows from the duality equation (2.10), we therefore obtain 

(4.14) 

A -  1.5. (4.15) 

Finally, the finite-lattice curves for the second derivative E;(A)/M are displayed in 
figure 6. These possess strong peaks near A = 1, whose maxima grow linearly with M, 
and whose widths decrease in an approximately linear fashion. Thus it appears that a 
delta function is developing in the specific heat as the bulk limit is approached, after the 
pattern predicted by Imry (1980). We have attempted to estimate its strength by: 

(i) fitting a Gaussian or a Lorentzian line shape to each of the finite-lattice curves in 
the range 0.9<A C 1 . l ;  

(ii) finding the integral under each fitted curve; 
(iii) extrapolating the sequence so obtained using modified VBS approximants. 
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I 
0 4  0 6  08 1 0  

x 
0 
0.2 2 

Figure 6 .  Finite-lattice results for the second derivative (-Eg/M) plotted against A for the 
five-state Potts model. 

The result is poor, because the finite-lattice peaks are not well fitted by either a 
Gaussian or a Lorentzian form, and the sequence is not well converged. But we do 
obtain a value by this means of 

A -  1.5. (4.16) 

Unfortunately, the results (4.12), (4.15) and (4.16) are all too large by an order of 
magnitude. The exact result, given by (3.39,  is A = 0.173. It appears that the true first 
derivative is more like curve b of figure 5 ,  and exhibits strong curvature near A = 1 in 
addition to the latent heat discontinuity. This makes it very difficult to form a reliable 
estimate of the latent heat. 

5. Finite-lattice results for the equivalent eight-vertex model 

In order to investigate higher Q values, we have turned to the equivalent eight-vertex 
model Hamiltonian, equation (3.24), where Q appears merely as a parameter. The two 
lowest eigenvalues have been calculated for lattices of 2 M  sites, M = I ,  . . . , 7 ,  with 
periodic boundary conditions. The ground state at A = 0 contains equal numbers of + 
and - spins; the first excited state was taken with one extra spin flipped from - to +. 

First, the bulk value of the ground-state energy per site was estimated by extrapola- 
tion of the finite-lattice sequences, for values of Q = 4 , 5 , 6 , 8  and 12. The results were 
in good agreementt with those of 8 4, for 0 = 4 and 5 .  The sequences all converged 

f Note, that the results for given lattice size M are not exactly identical in the original Potts model (2.6) and in 
the equivalent eight-vertex model (3.24). This is presumably a boundary effect. The estimated bulk limits do 
agree, however. 
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particularly well at the self-dual point A = 1: a comparison of our numerical estimates 
with the exact results is given in table 5 .  It can be seen that the agreement is excellent. 

Table 5. Ground-state energy per site at the critical point A,=  1, for Q-state Potts models 
with Q = 4 ,  5, 6, 8 and 12. The table compares the numerical values (computed by 
extrapolation of the finite-lattice sequences) with the exact results derived in § 3. 

Q Numerical result Analytic result 

4 -3.545 18 -3.545 18 
5 -4.622 55 -4.622 54 
6 -5.679 17 -5.679 22 
8 -7.754 2 -7.754 96 

12 -11.833 -11.834 70 

Next, the mass gap was estimated by similar methods. The results agreed with those 
for the original Potts model (2 .6) ,  within errors, when Q = 4 and 5 .  The estimated mass 
gaps are plotted against A in figure 7. For A S 0.8, the sequences converge linearly, and 
our estimates are expected to be accurate to one per cent or better; but beyond that 
point, where the mass gaps begin to dip rapidly towards the transition point, the 
convergence gets worse and our curves become somewhat approximate. 

h 

Figure 7. The mass gap F ( A )  plotted against A for Q-state Potts models. The curves were 
obtained by sequence extrapolation of finite-lattice results for the equivalent eight-vertex 
Hamiltonian. Expected errors are of order the width of the line for A G 0.8, and up to k0.2 
thereafter. 
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The mass gap estimates at the transition point; A = 1, are compared with the exact 
analytic result (3.38) in figure 8. It can be seen that the numerical results agree with the 
analytic ones to about the expected degree of accuracy. But the exponential drop as 
Q + 4 (equation (3.39)) means that in the cases Q = 5 and 6 the mass gap is indis- 
tinguishable from zero by our numerical methods: that is, these methods cannot 
distinguish that the transition is first order rather than second. For the cases Q = 8 and 
Q = 12, the result is definitely non-zero, signalling the first-order transition. 

Figure 8. The mass gap at the transition point, F ( h  = I ) ,  for Q-state Potts models. The full 
line is the exact analytic result; the circled points are numecal estimates obtained by 
finite-lattice sequence extrapolation. 

Finally, another attempt was made to estimate the latent heat of these transitions. A 
new method was adopted for this purpose. Recall that our objective is to estimate the 
quantity limA+l limM.+m[(l/M)dEn(A, M)/aA] (from which the latent heat can be 
deduced). Care must be exercised, because the double limit is non-uniform. The 
procedure we have chosen is to estimate the limit of the sequence 

(5.1) 

by sequence extrapolation of our finite-lattice results. The sequence of points A M  must 
not approach A = 1 too fast, or we will reach the limits M + 00, A -+ 1 in the wrong order, 
and obtain A = 0 (corresponding to the fact that there is no phase transition on a finite 
lattice). From Imry’s result that the width of the region where finite-size effects 
dominate is 0 ( 1 / M ) ,  this implies a restriction that the index S in (5.1) must be less than 
1. On the other hand, the points AM must not approach A = 1 too slowly, or the 
sequence (5.1) will itself converge too slowly. Thus we have chosen, arbitrarily, to set 
the index 6 = 0.8. 

The limit (5.1) should, in principle, be independent of the parameter E n .  But if c0 is 
chosen too small, our limited set of results will all lie in the ‘finite-size region’, and the 
estimated limit will tend to show A = 0, again. For this reason, we restrict c0 > 0.2. 
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6 -  

L -  
A 

2 -  

00 

Figure 9 shows an example of the estimated limits (5.1), as a function of so, for 
Q = 8. The results from our short sequence are not in fact stable, but vary almost 
linearly with c 0 ;  so we have arbitrarily chosen our final estimate as the intercept of this 
line at so  = 0. 

, , , , , I O  

't 

Figure 9. Estimates of the limit (5.1) plotted against the parameter F ~ ,  with 6 = 0.8, for 
Q = 8. 'The circles are estimates obtained by sequence extrapolation of the finite-lattice 
results, for various E " ;  the line is a straight-line fit; the square indicates the chosen final 
estimate. 

Having estimated the limit (5.1) in this way, one can deduce the latent heat using 
equation (4.14). The results are compared with the exact result, equation (3.359, in 
figure 10. It can be seen that the numerical results are too high for Q = 5 and 6 ,  where 
the latent heat is again trending exponentially to zero, although the estimate for Q = 5 is 
a good deal better than those of § 4. For Q = 8 and 12, the numerical results are 
surprisingly accurate, more so than our rough error bars would lead one to expect: this 
may be partly fortuitous. 

Figure 10. The latent heat A plotted against Q, for Q-state Potts models. The full line is the 
exact analytic result; the circled points are numerical estimates, obtained in the manner 
outlined in the text. 
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6. Summary and conclusions 

The object of this work was to apply finite-lattice sequence extrapolation techniques 
(HB) to investigate the behaviour of Q-state Potts models in Hamiltonian field theory, 
for Q 2 4. We were particularly interested in exploring the application of finite-lattice 
techniques to a system with a first-order phase transition. 

Some aspects of the critical behaviour of these models can be derived exactly. Using 
the work of Temperley and Lieb (1971), and Baxter (1973b), it is possible to show an 
equivalence between the Q-state Potts model and a staggered eight-vertex model. 
Taking the anisotropic limit in the manner of Fradkin and Susskind (1978), one obtains 
the equivalent eight-vertex field theory Hamiltonian. At the self-dual point A = 1, 
where the phase transition occurs, this Hamiltonian reduces to a simple Heisenberg- 
Ising form. Its ground-state energy has been derived by Yang and Yang (1966), and the 
mass gap to the first excited state has been calculated by Johnson et a1 (1973). Using 
Baxter’s (1973a) results, the latent heat in the Hamiltonian field theory was also 
derived. 

Comparing the results found here with those of Baxter (1973b) for the isotropic 
Potts model, one corifirms the universality between the statistical mechanics and the 
Hamiltonian field theory formulations. In both cases, the transition is first order, with a 
latent heat which vanishes exponentially (an essential singularity) as Q + 4. From the 
Fradkin-Susskind (1978) limiting procedure, it is obvious that this universality must 
hold for any model, in fact, whose critical behaviour is universal with respect to 
anisotropic couplings. 

The later sections of the paper concerned the numerical finite-lattice work. In 
general, the finite-lattice sequences did not converge as well as for the Z3 or three-state 
Potts model treated by HB. Nevertheless, we believe our results to be somewhat more 
reliable and accurate than previous analyses. 

The findings for the models considered were the following. 

6.1. Four-state Potts model 

A second-order critical point was found to lie at the self-dual point A = 1 (as expected), 
within errors fO.Ol%. The critical exponents were estimated to be 

v = 0.71 f0.02, 

( Y / U  = 0.75 fO.01, 
and hence 

(Y = 0.53 f 0.02. 

The sequences for these exponents were a little unstable, which may indicate the 
presence of more complicated singularities of some sort. 

These results agree quite well with previous finite-lattice estimates: Roomany and 
Wyld (1980b) obtained a value v = 0.76, and Blote et a1 (1980) found y T  = l / v  = 1.37 
(reading off their figure 1). They also agree with the latest series estimate, that of 
Ditzian and Kadanoff (1979)’ who found (Y = 0.50*0.05. Finally, they satisfy the 
hyperscaling relations within errors: e.g. for cy/ v = ?, hyperscaling would predict 
v = i;i = 0.727, cy = &= 0.545. 

Our results apear inconsistent, however, with the universality conjecture (Y = v = $, 
a / v  = 1, y~ = 4 (Enting 1975, Kadanoff 1977, Domany and Riedel 1978, den Nijs 

8 
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1979). The result for a/v, in particular, appears incompatible with the conjecture. Now 
the presence of confluent power-law singularities should not affect our method (Barber 
and Hamer 1980), except to slow the rate of convergence. But the method is vulnerable 
to logarithmic corrections to scaling, of the sort suggested for this model by Nauenberg 
and Scalapino (1980) and Black and Emery (1981). If one multiplies the terms of the 
sequence vM(&) by [l +ln(M)], for instance, then the apparent limit of the sequence 
changes to 0.92. So a term of this type may explain the apparent discrepancy with 
universality. 

6.2. Five-state Potts model 

This model was also treated separately, using the original Potts Hamiltonian. 
By all the numerical tests, it was impossible to distinguish the transition in this model 

from a second-order one. Both the mass gap? and the 8 function appeared to vanish at 
the self-dual point A = 1, within errors. The reason for this can be seen from the exact 
solution, equation (3.38), which contains an essential singularity at Q = 4. The mass 
gap at Q = 5 is thus exponentially small (F(A  = 1) = 0.002), and impossible to dis- 
tinguish from zero by our numerical methods. Similar conclusions have been reached by 
other authors: for instance, the high-temperature series analysis of Kim and Joseph 
(1975), who found evidence that the susceptibility diverges at or near the transition 
point; and the finite-size scaling analysis of Roomany and Wyld (1980b), who found a 
second-order transition there. 

A study of the ground-state energy revealed evidence for a discontinuity in its slope 
at A = 1, i.e. a first-order phase transition. Several crude methods were tried in this 
section for estimating the latent heat. They all gave A =  1-1.5, an order of magnitude 
larger than the exact value A = 0.17. There appears to be some strong curvature near 
A = 1 in the quantity E;/M, in addition to the discontinuity, and it is very difficult to 
separate the two effects. 

It is interesting to note the characteristic features of a first-order phase transition, as 
observed in a finite-lattice calculation of the present type. There is no hysteresis 
phenomenon, such as was observed in the Monte Carlo calculations of Creutz et a1 
(1979), because the present method always gives the exact (or ‘equilibrium’) ground 
state. Instead, the first-order transition is signalled by finite-lattice peaks in Eg/M 
whose heights increase (and whose widths decrease) linearly with lattice size M. 
Physical arguments which lead to this conclusion have been given by Imry (1980). In 
the bulk limit these peaks will develop into a delta function singularity. 

6.3. General Q-state Potts models 

In § 5 ,  a finite-lattice analysis of the equivalent eight-vertex Hamiltonian was carried 
out, for Q = 4, 5 ,  6 ,  8 and 12. The results for Q = 4 and 5 agreed within errors with 
those above. Numerical estimates were made by sequence extrapolation of finite- 
lattice results for the ground-state energy, the mass gap and the latent heat. The results 

t It is worth emphasising that the first excited state involved here is a local excitation containing an extra 
‘flipped’ spin, which controls the correlation length in the model, and lies in a disjoint sector of states from the 
ground state. A first-order phase transition involves the crossing of two ‘vacuum’ eigenvalues, and the ‘mass 
gap’ between these two states will automatically vanish at the transition point. We have not looked for this 
‘metastable vacuum’ state. 
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at the transition point, A = 1, were displayed as functions of Q in table 5 and figures 8 
and 10. 

The estimated ground-state energies agreed with the exact results to an excellent 
accuracy, of order 1 part in lo5. The mass gaps could not be estimated so accurately, 
and for Q = 5 and Q = 6 they were indistinguishable from zero, within errors: that is, 
these cases could not be distinguished from second-order transitions. This is because of 
the strong essential singularity in the mass gap at Q = 4, which implies exponentially 
small values nearby. For Q = 8 and Q = 12, the numerical estimates were definitely 
non-zero, and were in approximate agreement with the exact results. 

Finally, a new method was tried for estimating the latent heat of these transitions, 
which had some success. The non-uniform double limit, 

limA.+1 limM,m[(l/M)aEo(A, M)/aA I, 
was estimated as the limit of a sequence of finite-lattice values taken at points 

AM = 1 - EO/M6, (6.2) 

with S restricted to be less than 1 (the actual value chosen was 0.8), and arbitrary. The 
sequence (6.2) approaches A = 1 more slowly than the region of finite-size rounding 
does, which according to Imry (1980) goes like 0(1/M); thus the sequence is expected 
to give us the correct limit. In practice, the estimated limit was found to vary somewhat 
with eo, due to the restricted length of the sequence available, and an extrapolation to 
E O  = 0 was made to achieve the final estimate. The results were still too high for Q = 5 
and 6, where the latent heat is small, but were surprisingly accurate for Q = 8 and 12. A 
similar method could be used in calculating spontaneous magnetisation values from a 
finite-lattice approach. 
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